Modulation of Innate Immune Signalling by Lipid-Mediated MAVS Transmembrane Domain Oligomerization

نویسندگان

  • Luis Nobre
  • Daniel Wise
  • David Ron
  • Romain Volmer
  • Karin E. Peterson
چکیده

RIG-I-like receptors detect viral RNA in infected cells and promote oligomerization of the outer mitochondrial membrane protein MAVS to induce innate immunity to viral infection through type I interferon production. Mitochondrial reactive oxygen species (mROS) have been shown to enhance anti-viral MAVS signalling, but the mechanisms have remained obscure. Using a biochemical oligomerization-reporter fused to the transmembrane domain of MAVS, we found that mROS inducers promoted lipid-dependent MAVS transmembrane domain oligomerization in the plane of the outer mitochondrial membrane. These events were mirrored by Sendai virus infection, which similarly induced lipid peroxidation and promoted lipid-dependent MAVS transmembrane domain oligomerization. Our observations point to a role for mROS-induced changes in lipid bilayer properties in modulating antiviral innate signalling by favouring the oligomerization of MAVS transmembrane domain in the outer-mitochondrial membrane.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple truncated isoforms of MAVS prevent its spontaneous aggregation in antiviral innate immune signalling

In response to virus infection, RIG-I-like receptors (RLRs) sense virus RNA and induce MAVS to form prion-like aggregates to further propagate antiviral signalling. Although monomeric MAVS recombinant protein can assemble into prion-like filaments spontaneously in vitro, endogenous MAVS in cells is prevented from aggregation until viral infection. The mechanism preventing cellular MAVS from spo...

متن کامل

The mitochondrial ubiquitin ligase MARCH5 resolves MAVS aggregates during antiviral signalling

Mitochondria serve as platforms for innate immunity. The mitochondrial antiviral signalling (MAVS) protein forms aggregates that elicit robust type-I interferon induction on viral infection, but persistent MAVS signalling leads to host immunopathology; it remains unknown how these signalling aggregates are resolved. Here we identify the mitochondria-resident E3 ligase, MARCH5, as a negative reg...

متن کامل

MAVS self-association mediates antiviral innate immune signaling.

The innate immune system recognizes nucleic acids during viral infection and stimulates cellular antiviral responses. Intracellular detection of RNA virus infection is mediated by the RNA helicases RIG-I (retinoic acid inducible gene I) and MDA-5, which recognize viral RNA and signal through the adaptor molecule MAVS (mitochondrial antiviral signaling) to stimulate the phosphorylation and activ...

متن کامل

Functional Characterization of Domains of IPS-1 Using an Inducible Oligomerization System

The innate immune system recognizes viral nucleic acids and stimulates cellular antiviral responses. Intracellular detection of viral RNA is mediated by the Retinoic acid inducible gene (RIG)-I Like Receptor (RLR), leading to production of type I interferon (IFN) and pro-inflammatory cytokines. Once cells are infected with a virus, RIG-I and MDA5 bind to viral RNA and undergo conformational cha...

متن کامل

IRTKS negatively regulates antiviral immunity through PCBP2 sumoylation-mediated MAVS degradation

RNA virus infection is recognized by the RIG-I family of receptors that activate the mitochondrial adaptor MAVS, leading to the clearance of viruses. Antiviral signalling activation requires strict modulation to avoid damage to the host from exacerbated inflammation. Insulin receptor tyrosine kinase substrate (IRTKS) participates in actin bundling and insulin signalling and its deficiency cause...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015